Diterpenoid Alkaloids from Delphinium majus

Feng-Zheng Chen,^{†,‡} Dong-Lin Chen,[†] Qiao-Hong Chen,^{*,†} and Feng-Peng Wang^{*,†}

Department of Chemistry of Medicinal Natural Products, West China College of Pharmacy, Sichuan University, No. 17, Duan 3, Renmin Nan Road, Chengdu 610041, People's Republic of China, and Department of Chemistry and Life Sciences, Leshan Teachers College, No. 778, Bing He Road, Leshan 614004, People's Republic of China

Received July 17, 2008

From the whole herbs of *Delphinium majus*, three new C_{19} -diterpenoid alkaloids, majusines A–C (1–3), and six new C_{20} -diterpenoid alkaloids, majusimines A-D (4-7) and majusidine A and B (8 and 9), have been isolated, together with 15 known compounds. The structures of compounds 1-9 were elucidated by spectroscopic data interpretation.

Delphinium species represent a large genus within the Ranunculaceae family. It is estimated that about 350 species of Delphinium exist in the world, mainly in the northern hemisphere, of which 173 are found in mainland China.¹ A large number of diterpenoid alkaloids have been isolated from various species of Delphinium and Aconitum and are classified according to their structures as C18-, C19-, and C20-diterpenoid alkaloids.² Diterpenoid alkaloids have been the targets of considerable interest of medicinal chemists for a broad range of demonstrated pharmacological properties: analgesic, antiarrhythmic, anti-inflammatory, arrhythmogenic, curariform, hypotensive, local anesthetic, neurotropic, psychotropic, and spasmolytic.^{3–8} These studies have shown that these alkaloids act as site 2 neurotoxins and can be subdivided into two main groups.^{4,9} It is intriguing that these alkaloids exhibit different actions varying from poisonous (e.g., aconitine) to therapeutic (e.g., lappaconitine), even though they share a similar molecular skeleton. Interestingly, two reports on the antiproliferative activities of the diterpenoid alkaloids toward cancer cells have appeared in recent years.^{10,11}

The plant Delphinium majus W. T. Wang is distributed mainly in southwest Sichuan and northwest Yunnan of mainland China, especially around the Jinsha River basin. To our knowledge, no previous work has been reported on the phytochemistry of this plant. As part of an ongoing research program to investigate the chemistry and analgesic activities of diterpenoid alkaloids from Aconitum and Delphinium plants, we have carried out a study on the whole plants of D. majus, which led to the isolation of three new C19-diterpenoid alkaloids, majusines A-C (1-3), and six new C_{20} -diterpenoid alkaloids, majusimines A-D (4-7) and majusidines A and B (8 and 9), as well as 15 known compounds: acetydelgrandine,¹² ajacine,¹³ blacknine,¹⁴ browniine,¹³ 14-dehydrobrowniine,¹⁵ 14-dehydrodelcosine,¹⁵ delcosine,¹³ delgrandine,¹² delsemine A,¹⁶ delsemine B,16 deltaline,16 isodelpheline,17 lycoctonine,16 methyllycaconitine,¹⁶ and tatsiensine.¹⁷ We describe herein the separation and structure elucidation of these new diterpenoid alkaloids.

Results and Discussion

Three new C₁₉-diterpenoid alkaloids, designated as majusines A-C (1-3), were obtained as amorphous powders. Their molecular formulas, C32H44N2O9, C24H37NO6, and C26H37NO6, respectively, were inferred from their HRESIMS and NMR spectra, which showed that each contained a lycoctonine-type C₁₉-diterpenoid alkaloid skeleton.18

The NMR spectra of majusine A (1) exhibited signals at $\delta_{\rm H}$ 1.14 (3H, t, J = 7.2 Hz), $\delta_{\rm C}$ 13.5 (q), 50.2 (t), for a *N*-ethyl group, $\delta_{\rm H}$ 3.30, 3.37 (each 3H, s), $\delta_{\rm C}$ 57.8 (q), 56.2 (q), for two aliphatic

H₂C Ac(OHC OHC 19 R₁ R_2 7 OAc OAc OH 5 OAc 6 OH OH RO AcO H HC ŌН 8

methoxyl groups, and a N-acetyl anthranoyl group ($\delta_{\rm H}$ 11.0, 1H, s, NH, 7.12–8.72, 4H, m, Ar-H; $\delta_{\rm C}$ see Table 1). Along with the

10.1021/np800439a CCC: \$40.75 © 2009 American Chemical Society and American Society of Pharmacognosy Published on Web 12/12/2008

OCH-

^{*} To whom correspondence should be addressed. Tel/Fax: +86-28-5501368. E-mail: wfp@scu.edu.cn.

Sichuan University.

^{*} Leshan Teachers College.

	1^b		2^b		3^{b}	
position	$\delta_{ m H}$	$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{\rm C}$
1	3.70 t (4.0)	72.3 d	3.74 t (3.2)	71.8 d	3.70 d (4.8)	70.7 d
2	1.63 m	29.1 t	1.59 m	29.5 t	5.78 dd (9.2, 4.8)	130.2 d
	1.63 m		1.59 m			
3	1.80 m	27.3 t	1.52 m	31.7 t	5.68 d (9.2)	136.8 d
	1.94 m		1.61 m			
4		36.7 s		32.5 s		35.2 s
5	1.93 s	45.6 d	1.37 s	51.7 d	1.74 s	55.3 d
6	4.03 s	90.4 d	3.65 s	89.2 d	5.28 s	81.6 d
7		87.9 s		92.1 s		87.2 s
8		77.9 s		83.2 s		77.4 s
9	2.96 m	43.9 d	3.56 t (5.6)	42.0 d	3.08 dd (6.8, 4.8)	42.1 d
10	2.07 m	45.2 d	2.05 dd (9.6, 5.6)	45.7 d	2.03 m	44.3 d
11		48.9 s		50.8 s		49.1 s
12	1.57 m	29.1 t	1.72 m	28.8 t	2.20 m	27.9 t
	1.62 m		2.03 m		2.23 m	
13	2.37 t (2.8)	39.3 d	2.35 (hidden)	38.6 d	2.58 m	37.4 d
14	4.12 dd (9.6, 4.8)	75.5 d	4.13 t (4.8)	74.6 d	4.87 t (4.8)	76.9 d
15	1.69 q (9.2)	34.3 t	1.88 dd (16.4, 5.2)	35.8 t	1.46 dd (14.8, 7.2)	38.3 t
	2.77 q (9.2)		2.55 dd (16.4, 5.2)		3.0 dd (14.8, 7.2)	
16	3.44 (hidden)	81.8 d	3.37 m	81.6 d	3.35 (hidden)	82.2 d
17	2.92 br s	65.9 d	3.01 s	65.1 d	2.87 br s	65.7 d
18	4.23 br s	69.3 t	1.02 s	27.1 q	1.03 s	23.8 q
19	2.67 (hidden)	56.7 t	2.30, 2.51	60.9 t	2.48, 2.55	56.1 t
	3.32 (hidden)		ABq (12.4)		ABq (12.0)	
21	2.88 m	50.2 t	2.67 m	49.8 t	2.93 m	50.2 t
22	3.02 m	10.5	2.83 m	10.4	3.02 m	10.4
22	1.14 t (7.2)	13.5 q	1.09 t (6.8)	13.4 q	1.06 t (7.2)	13.6 q
CH ₃ O-6	3.30 s	57.8 q	3.34 s	58.5 q		
CH ₃ O-16	3.37 s	56.2 q	3.30 s	56.1 q	3.31 s	56.0
7-CH ₂ -8			5.06 s, 5.09 s	93.8 t	2.05	170.4
AcO-6					2.05 s	172.4 s
4 0 14					2.05	21.3 q
AcO-14					2.05 s	170.6 s
1 10 000 4/5/(/		1(0.0				21.4 q
		108.0 s				
1		114.2 s				
∠ 2′	7.06.1(9)	141.8 8				
5 A'	7.90 u (ð) 7.50 ± (8)	120.5 d				
+ 5'	7.391(0) 7.12 + (8)	155.0 u 122.5 d				
5 C'	$1.12 t(\delta)$	122.5 U				
	ο. / 2 U (δ) 11 O ο	130.0 d				
-IND- 1″	11.0 8	168.0 a				
1	0.05 -	100.9 8				

^{*a*} Recorded at 400 MHz for ¹H, 100Mz for ¹³C, δ in ppm, J in Hz. ^{*b*} Recorded in CDCl₃.

above-mentioned signals, its ¹³C NMR spectrum displayed seven oxygenated carbon signals (δ_c 69.3 t, 72.3 d, 75.5 d, 77.9 s, 81.8 d, 87.9 s, 90.4 d), suggesting that compound **1** possesses four hydroxyl groups in addition to two methoxyl groups and an N-acetyl anthranoyl ester group. All of this evidence, along with careful inspection of the NMR data (1H, 13C, DEPT, HMQC, and HMBC), indicated that majusine A is a lycoctonine-type C₁₉-diterpenoid alkaloid.^{18,19} The two methoxyl groups could be assigned at C-6 and C-16, respectively, due to the correlations between OCH₃-6 $(\delta_{\rm H} 3.30)$ and C-6 $(\delta_{\rm C} 90.4)$, and between OCH₃-16 $(\delta_{\rm H} 3.37)$ and C-16 ($\delta_{\rm C}$ 81.8), in the HMBC spectrum. The N-acetyl anthranoyl group was located at C-18 on the basis of the correlation from H₂-18 to the ester carbonyl of the N-acetyl anthranoyl group (Figure 1). An α -oriented hydroxyl group at C-1 was evident from the presence of an oxymethine chemical shift at $\delta_{\rm C}$ 72.3 in the ¹³C NMR spectrum and a one-proton triplet signal of an associated methine at $\delta_{\rm H}$ 3.70 (J = 4.0 Hz) in the ¹H NMR spectrum.¹⁸ This was confirmed by the correlations between H-1 and H₂-2 in the COSY spectrum. An OH-14 α group was supported by the presence of a one-proton quartet signal at $\delta_{\rm H}$ 4.12 (J = 4.8 Hz), which changed to a triplet on addition of D₂O.¹⁸ These observations led to the assignment of the structure of majusine A as 1.

The NMR spectra of majusine B (**2**) also exhibited characteristic features of a lycoctonine-type norditerpenoid alkaloid,^{18,19} bearing

Figure 1. Key ${}^{1}\text{H}{-}{}^{1}\text{H}$ COSY (\frown) and HMBC (\rightarrow).

a tertiary methyl ($\delta_{\rm H}$ 1.02, 3H, s), an *N*-ethyl group ($\delta_{\rm H}$ 1.09, 3H, t, J = 6.8 Hz), a methylenedioxy group ($\delta_{\rm H}$ 5.06, 5.09, 2H, s), and two methoxyl groups ($\delta_{\rm H}$ 3.34, 3.30, each 3H, s). A methylenedioxy group was readily located at C-7 and C-8, which was corroborated by the long-range correlations from a methylene group ($\delta_{\rm H}$ 5.09, 5.06) to C-7 ($\delta_{\rm C}$ 92.1) and C-8 ($\delta_{\rm C}$ 83.2). The two methoxyl groups could be assigned at C-6 and C-16 on the basis of the related correlations in the HMBC spectrum (Figure S1, Supporting Information). A triplet signal (J = 4.8 Hz) at $\delta_{\rm H}$ 4.13 in the ¹H NMR spectrum was assigned to H-14 β , implying the presence of

Table 2. NMR Data of Majusimines A, C, and D (4, 6, 7) and Majusidines A and B (8 and 9)^a

position	4^{b}	6 ^c	7 ^c	8 ^c	9 ^b
1	6.01 d (3.6)	6.44 d (4.0)	6.20 t (4.0)	1.51 dd (6.4, 1.6)	2.71d (16)
				2.66 dd (6.4, 1.6)	3.50d (16)
2	6.08 t (3.6)	6.77 t (4.0)	6.80 t (4.0)	1.47 (hidden)	2.20 (hidden)
				2.20 (hidden)	2.35 (hidden)
3	5.18 d (3.6)	5.62 d (4.0)	5.63 d (4.0)	3.75 d (4.4)	
5	2.15 (hidden)	2.36 s	2.42 s	1.82 s	2.04 s
6	3.10 s	3.65 s	3.69 s		3.38 s
7	4.90 s	4.74 s	4.79 s	2.15, 2.24	1.69,1.85
				ABq (20.8)	ABq (3.2)
9	2.72 d (9.6)	3.23 d (10)	3.69 (hidden)	1.64 d (1.6)	2.43 d (8.8)
11	5.61 d (9.6)	6.33 d (10)	6.40 d (5.2)	4.41 d (1.6)	4.28 d (8.8)
12	2.68 d (2.0)	2.99 br s	3.42 s	2.30 t (2.8)	2.41 (hidden)
13	5.22 dd (10.0, 2.0)	5.47 br d (10)		5.15 d (9.6)	5.15 d (10)
14	3.24 dd (10.0, 2.0)	3.68 d (10)	3.48 s	2.70 (hidden)	2.16 d (10)
15	5.66 s	5.20 s	5.32 s	2.02, 2.21	2.10, 2.24 (hidden)
				ABq (13.2)	
17	5.32 s	5.34 s	5.30 s	4.76 s	4.75 s
	5.38 s	5.39 s	5.36 s	4.90 s	4.93 s
18	1.14 s	1.32 s	1.32 s	2.07 s	1.15 s
19	9.51 s	10.07 s	10.28 s	3.50, 3.96	2.20, 2.74 (hidden)
				ABq (12)	
20	3.91 s	4.40 s	4.47 s	4.06 s	2.72 s
N-CH ₃	2.50 s	3.08 s	3.06 s		
AcO-1	1.89 s	1.88 s	2.09 s		
AcO-3	2.15 s	2.09 s	1.94 s	2.37 s	
AcO-7	2.12 s				
AcO-11	2.05 s	2.19 s	2.07 s		
AcO-15	2.11 s				
OCOC ₆ H ₅ -2					
2',6',	7.77 d (8)	7.98 d (8)	8.13 d (7.2)		
3',5'	7.08 t (8)	7.14 t (8)	7.40 t (7.2)		
4'	7.34 t (8)	7.29 t (8)	7.50 t (7.2)		
OCOC ₆ H ₅ -13					
2',6'	7.56 d (7.6)	8.06 d (7.6)			
3',5'	7.29 t (7.6)	7.40 t (7.6)			
4'	7.52 t (7.6)	7.48 t (7.6)			
1'					
2'					2.57 m
3'					1.52, 1.73 m
4'					0.95 t (7.2)
5'					1.21 d (6.8)
4 D 1 1 1 100 1					

^{*a*} Recorded at 400 MHz. ^{*b*} Recorded in CDCl₃. ^{*c*} Recorded in C₅D₅N.

a OH-14 α functionality.^{18,19} The OH-1*a* group was confirmed by a methine signal at $\delta_{\rm C}$ 71.8 in the ¹³C NMR spectrum and the correlations between H-1 and H₂-2 in the COSY spectrum (Figure S1, Supporting Information). The above findings led to the determination of the structure of majusine B as **2**.

The NMR spectroscopic data of **3** revealed signals at $\delta_{\rm H}$ 1.06 (3H, t) and $\delta_{\rm C}$ 13.6 (q), 50.2 (t) for a N-ethyl group, $\delta_{\rm H}$ 1.03 (3H, s) and $\delta_{\rm C}$ 23.8 (q) for a tertiary methyl, $\delta_{\rm H}$ 3.31 (3H, s) and $\delta_{\rm C}$ 56.1 (q) for a methoxyl group, $\delta_{\rm H}$ 2.05, 2.05 (each 3H, s) and $\delta_{\rm C}$ 172.4 (s), 21.3 (q); 170.6 (s), 21.4 (q), for two acetyl groups, and $\delta_{\rm H}$ 5.78, 5.68 (each 1H) and δ_{C} 130.2, 136.8 (both d), for two unsaturated methines. The IR and ¹³C NMR spectra (3510 cm⁻¹, $\delta_{\rm C}$ 87.2 s, 77.4 s, and 70.7 d) of **3** afforded evidence of two tertiary hydroxyl groups and a secondary hydroxyl group. Correlations between OCH₃-16 and C-16, H-6 and the ester carbonyl (172.4 s), and H-14 and the ester carbonyl (170.6 s) in the HMBC spectrum (Figure S2, Supporting Information) suggested that the methoxyl group and two acetyl groups could be assigned at C-16, and C-6 and C-14, respectively. The occurrence of the OMe-16 group excluded the possibility of a $\Delta^{15(16)}$ functionality. A $\Delta^{2(3)}$ double bond was corroborated by the correlations from H-2 to C-4 and from H-19 to C-3 in the HMBC spectrum (Figure S2, Supporting Information). The secondary hydroxyl group was located at C-1 on the basis of the correlation with H-2 in the COSY spectrum, while the α -orientation of OH-1 was confirmed in the NOEDS spectrum by the coupling between the H-1 β (3.70 d) and H-10 β (2.03 m). The structure of majusine C was thus deduced as 3.

Majusimines A-D (4-7) were isolated as amorphous powders and exhibited characteristic NMR features of vakognavine-type C20diterpenoid alkaloids.² Their molecular formulas were determined as C₄₅H₄₇NO₁₅, C₄₃H₄₅NO₁₄, C₄₁H₄₃NO₁₃, and C₃₄H₃₇NO₁₂, respectively, according to their HRESIMS and NMR spectra. The four compounds were found to possess a similar skeleton to that of vakognavine, for which the structure was established by X-ray crystallographic analysis.²⁰ The presence of an aldehyde in majusimilar A–D (4–7) was apparent from singlet signals at $\delta_{\rm H}$ 9.51 for 4, 8.94 for 5, 10.07 for 6, and 10.28 for 7 and the methine signal at $\delta_{\rm C}$ 193.3 for 4, 193.0 for 5, 194.0 for 6, and 194.1 for 7, respectively. The NMR spectra of 4 afforded evidence of a N-CH₃ group ($\delta_{\rm H}$ 2.50, 3H, s; $\delta_{\rm C}$ 34.0 q), a tertiary methyl group ($\delta_{\rm H}$ 1.14, 3H, s; δ_C 23.2 q), an exocyclic double bond (δ_H 5.32, 5.38, each 1H, br s), five acetyl groups ($\delta_{\rm H}$ 1.89, 2.15, 2.12, 2.05, 2.11, each 3H, s; $\delta_{\rm C}$ see Table 3), and two benzoyl groups ($\delta_{\rm H}$ 7.08–7.77, 10H, m) (Table 2). The five acetyl groups and two benzoyl groups could be assigned at C-1, C-2, C-3, C-7, C-11, C-13, and C-15, respectively, due to the correlations between H-1/OAc-1 ($\delta_{\rm C}$ 169.6), H-2/OBz-2 ($\delta_{\rm C}$ 164.0), H-3/OAc-3 ($\delta_{\rm C}$ 169.4), H-7/OAc-7 ($\delta_{\rm C}$ 170.1), H-11/OAc-11 ($\delta_{\rm C}$ 170.7), H-13/OBz-13 ($\delta_{\rm C}$ 165.6), and H-15/OAc-15 ($\delta_{\rm C}$ 170.7), respectively (Figure 2). In addition, the relative configurations of these ester groups were evident from the NOESY correlations summarized in Figure 3. In the NOESY experiment, correlations between H-1 α and H-20 and between H-3 α and H-1 α (Figure 3) indicated the α -orientation of H-1 and H-3. Similarly, correlations between H-2 β and H-5 β , H-7 β and H-9 β , Diterpenoid Alkaloids from Delphinium majus

Table 3. NMR Data of Majusimines A–D (4–7) and Majusidines A and B (8 and 9)^a

-						
position	4 ^b	5 ^b	6 ^c	7 ^c	8 ^c	9 ^b
1	71.8 d	71.5 d	73.1 d	73.6 d	31.1 t	45.1 t
2	66.1 d	67.6 d	67.0 d	67.2 d	23.1 t	50.0 t
3	71.8 d	71.8 d	73.1 d	73.0 d	75.3 d	212.0 s
4	49.2 s	49.0 s	49.7 s	49.9 s	43.5 s	42.4 s
5	59.7 d	58.8 d	60.0 d	59.4 d	62.8 d	60.6 d
6	59.8 d	62.5 d	63.1 d	63.7 d	97.7 s	65.2 d
7	69.9 d	70.5 d	69.3 d	68.4 d	45.2 t	35.9 t
8	51.5 s	53.2 s	55.5 s	55.6 s	42.8 s	44.6 s
9	48.9 d	48.2 d	48.8 d	49.7 d	49.2 d	50.0 d
10	55.8 s	55.1 s	55.8 s	56.2 s	48.6 s	55.3 s
11	73.4 d	73.4 d	74.3 d	71.2 d	69.5 d	74.6 d
12	44.5 d	44.5 d	44.5 d	60.0 d	40.0 d	48.5 d
13	72.4 d	72.5 d	72.7 d	208.2 s	74.0 d	73.0 d
14	37.1 d	37.2 d	37.0 d	48.8 d	50.5 d	54.6 d
15	65.5 d	66.0 d	65.1 d	65.3 d	33.6 t	33.6 t
16	141.7 s	141.3 s	143.7 s	144.4 s	148.3 s	144.4 s
17	118.7 t	118.9 t	114.7 t	116.8 t	107.5 t	109.1 t
18	23.2 q	22.6 q	23.2 q	23.6q	28.1 q	28.7 q
19	193.3 s	193.0 s	194.0 s	194.1 s	58.4 t	64.6 t
20	63.3 d	63.3 d	64.9 d	67.7 d	68.3 d	70.7 d
N-CH ₃	34.0 q	35.4 q	35.0 q	35.5 q		
AcO-1	169.6 s	170.2 s	170.3 s	170.1 s		
	20.4 q	20.5 q	20.3 q	20.7 q		
AcO-3	169.4 s	169.4 s	170.3 s	170.4 s	170.6 s	
	20.8 q	21.1 q	20.4 q	20.4 q	21.2 q	
AcO-7	170.1 s					
	21.0 q					
AcO-11	170.7 s	171.8 s	170.8 s	170.6 s		
	21.1 q	21.3 q	21.5 q	21.3 q		
AcO-15	170.7 s	170.9 s				
	21.0 q	21.4 q				
OCOC ₆ H ₅ -2	164.0 s	164.2 s	164.9 s	165.4 s		
1'	129.0 d	129.0 d	129.0 d	129.5 d		
2',6'	129.4 d	129.6 d	129.4 d	129.8 d		
3',5'	128.3 d	128.5 d	128.6 d	129.1 d		
4'	133.3 d	133.3 d	133.7 d	133.9 d		
OCOC ₆ H ₅ -13	165.6 s	165.7 s	165.9 s			
1'	129.0 d	129.0 d	129.0 d			
2',6'	129.4 d	129.1 d	129.9 d			
3',5'	128.3 d	128.4 d	128.9 d			
4'	133.3 d	133.3 d	133.3 d			
1'						176.0 s
2'						41.2 d
3'						26.5 t
4'						11.5 q
5'						16.4 a

^{*a*} Recorded at 100 MHz, δ_c in ppm. ^{*b*} As in Table 1. ^{*c*} As in Table 2.

Figure 2. Key ${}^{1}\text{H}{-}{}^{1}\text{H}$ COSY (-) and HMBC (\rightarrow).

H-1 α and OAc-11 α , H-13 β and H-17, and H-15 β and H-7 β suggested the β -orientation of H-2, H-7, H-11, H-13, and H-15. Therefore, the structure of majusimine A (4) was assigned as shown.

Compounds **5** and **6** exhibited nearly identical ¹H and ¹³C NMR resonances to those of **4**. Differences between the three sets of spectra were demonstrated by the absence of an acetyl group in **5** and the absence of two acetyl groups in **6**, thus validating the loss of 42 mass units in **5** and the loss of 84 mass units in **6**, as found by mass spectrometry. The one-proton signal of H-7 was shifted upfield from $\delta_{\rm H}$ 4.90 in **4** to $\delta_{\rm H}$ 3.67 in **5**, suggesting that the acetyl group at C-7 in **4** was replaced by a hydroxyl group in **5**. In the

Figure 3. Key NOESY (\rightarrow) correlations of **4**.

Figure 4. Key ${}^{1}\text{H}{-}{}^{1}\text{H}$ COSY (-) and HMBC (-).

HMBC spectrum of **6**, critical correlations for H-1/OAc (δ_C 170.3), H-2/OBz (δ_C 164.9), H-3/OAc (δ_C 170.3), H-11/OAc (δ_C 170.8), and H-13/OBz (δ_C 165.9) (Figure S3, Supporting Information) suggested the location of the ester groups at C-1, C-2, C-3, C-11, and C-13, respectively, implying that the two acetyl groups at C-7 and C-15 in **4** were replaced by two hydroxyl groups in **6**.

Compound **7** showed similar NMR spectroscopic patterns to those of **6**, except for H-1, H-2, H-9, H-12, H-14, and H-15 (Table 1) and C-11, C-12, C-13, C-14, C-17, and C-20 (Table 3), indicating that both compounds are of the same type of C₂₀-diterpenoid alkaloid. Comparison of the NMR data of **7** with those of **6** indicated the presence of an additional ketone carbonyl resonance (δ_C 208.2) in the ¹³C NMR spectrum of compound **7**, in addition to the absence of resonances corresponding to a benzoyl group and a oxymethine. The additional ketone carbonyl group in **7** (δ_C 208.2) was assigned at C-13 on the basis of the correlations of C-13 with H-11 and H₂-17 in the HMBC spectrum. The structure of majusimine D was confirmed by the analysis of its 2D NMR data (Figure S4, Supporting Information).

Majusidine A (8) was isolated as an amorphous powder. Its positive-ion HRESIMS showed a quasimolecular ion peak at m/z388.2120 $[M + H]^+$, corresponding to the molecular formula C₂₂H₂₉N₅₀. The NMR and mass spectra indicated that it is a hetisine-subtype C₂₀-diterpenoid alkaloid with a N-C(6)-OH group.² The NMR spectra of $\mathbf{8}$ showed the presence of a tertiary methyl group ($\delta_{\rm H}$ 2.07, 3H, s; $\delta_{\rm C}$ 28.1 q), an exocyclic double bond ($\delta_{\rm H}$ 4.76, 4.90, each 1H, br s; $\delta_{\rm C}$ 107.5 t, 148.3 s), a quaternary carbon $(\delta_{\rm C} 97.7 \text{ s})$, and an acetyl group $(\delta_{\rm H} 2.37, 3\text{H}, \text{s}; \delta_{\rm C} 170.6 \text{ s}, 21.2 \text{ q})$. Except for the above-mentioned signals, its NMR spectra displayed three oxymethine signals (δ_C 75.3 s; δ_H 3.75, 1H, d; δ_C 69.5 s; δ_H 4.41, 1H, d; δ_C 74.0 s; δ_H 5.15, 1H, d) and an oxygenated quarternary carbon ($\delta_{\rm C}$ 97.7 s), showing that this compound possesses two hydroxyl groups in addition to an acetyl group and a N-C(6)-OH group. The HMBC experiment suggested that the ester group could be assigned to C-13 on the basis of the correlations from H-13 to the ester carbonyl carbon (Figure 4). The N-C(6)-OH group was also confirmed by the HMBC experiment that showed a correlation from H-19 to C-6. The other two hydroxyl groups were located at C-3 and C-11 on the basis of the correlations of H-19 to C-3 and H-1 to C-3, H-11 to C-16, and H-11 to C-20 in the HMBC spectrum. In the NOEDS spectrum (Figure S5, Supporting Information), correlations between H-3 and H-5 β or H-3 and H-18 β revealed the β -orientation of H-3. Similarly, correlations between H-20 and H-11, H-15, and H-13 suggested

the β -orientation of OH-11 and H-13. Accordingly, the structure of majusidine A was elucidated as **8**.

Positive-ion HRESIMS analysis of majusidine B (9) gave a pseudomolecular ion at m/z 412.2470 ([M + H]⁺), which suggested a molecular formula of C₂₅H₃₃NO₄. This compound exhibited characteristic NMR features of an amine group hetisine-subtype C₂₀-diterpenoid alkaloid,² displaying a ketone carbonyl ($\delta_{\rm C}$ 212.0), a 2-methylbutyryl (see Tables 2 and 3), and an exocyclic double bond ($\delta_{\rm H}$ 4.75, 4.93, each 1H, br s; $\delta_{\rm C}$ 109.1 t, 144.4 s). In addition, the presence of two oxymethines was also evident from the NMR data ($\delta_{\rm C}$ 74.6 d; $\delta_{\rm H}$ 4.28, 1H, d; $\delta_{\rm C}$ 73.0 q; $\delta_{\rm H}$ 5.15, 1H, d), implying that compound 9 possesses an additional hydroxyl group except for the ester group and ketone mentioned previously. The ketone carbonyl (δ_{C} 212.0) was correlated with H-18 (δ_{H} 1.15, 3H, s) and H-19 ($\delta_{\rm H}$ 2.20, 1H, $\delta_{\rm H}$ 2.74, 1H) in the HMBC spectrum, suggesting that the ketone carbonyl could be assigned to C-3. The hydroxyl group and ester group were assigned to C-11 and C-13, respectively, based on analysis of its HMQC and HMBC spectra (Figure S6, Supporting Information). The β -orientations of H-11 and H-13 were deduced by comparison of the coupling constants ($J_{\text{H-11} \beta, \text{H-9}} = 8.8$ Hz, $J_{\text{H-13 }\beta, \text{ H-14}} = 10$ Hz) with those of compounds 4 and 6 (Table 2). On the basis of the 1D and 2D NMR data (Figure S6, Supporting Information), the structure of majusidine B was assigned as 9.

The known alkaloids were identified by comparison of their ¹H and ¹³C NMR spectra with values reported in the literature.

Experimental Section

General Experimental Procedures. Optical rotations were measured on a Perkin-Elmer 341 polarimeter. IR spectra were obtained on a Nicolet FT-IR 200 SXV spectrophotometer. ¹H and ¹³C NMR spectra were taken on a Varian Unity INOVA 400/45 NMR spectrometer in CDCl₃ or C_5D_5N with TMS as the internal standard. The ESIMS and HRESIMS were recorded on a VG Auto Spec 3000 or a Finnigan-MAT 90 instrument. Silica gel H (Qingdao Sea Chemical Factory, Qingdao, People's Republic of China) was used for column chromatography. Zones on TLC (silica gel G) were detected using the modified Dragendorff's reagent.

Plant Material. *Delphinium majus* was collected in Miyi County, Sichuan Province, People's Republic of China, in July 2006. The plant was identified by Professor Q. E. Yang of the Beijing Institute of Botany, Chinese Academy of Sciences, where a voucher specimen (No. 06-9-1) has been deposited.

Extraction and Isolation. Air-dried and powdered whole herbs (6.0 kg) were percolated with 0.1 M HCl (60 L). The acid aqueous solution was basified with 10% aqueous NH₄OH to pH 10 and then extracted with ethyl acetate (30 L \times 3). Removal of the solvent under reduced pressure afforded the total crude alkaloids (31.4 g) as a yellowish, amorphous powder, which was chromatographed over a silica gel column, eluting with a cyclohexane-acetone (10:1 \rightarrow 1:2) gradient system, to give fractions A (3.4 g), B (4.2 g), C (6.5 g), D (7.6 g), E (1.9 g), and F (3.6 g). Fraction A (3.4 g) was further chromatographed on a silica gel column employing cyclohexaneacetone (6:1 \rightarrow 3:1) as eluent to afford fractions A-1 (89 mg), A-2 (1.7 g), A-3 (1.1 g), and A-4 (219 mg). Purification of fraction A-2 by silica gel column chromatography, eluting with cyclohexaneacetone (6:1), yielded majusine C (3, 57.7 mg), ajacine (308.9 mg), methyllycaconitine (380.6 mg), and isodelpheline (25.6 mg). Column chromatography of fraction B over a silica gel column using CHCl₃-CH₃OH (100:1 \rightarrow 30:1) as eluent afforded fractions B-1 (174 mg), B-2 (1.9 g), B-3 1.2 g), B-4 (462 mg), and B-5 (156 mg). Further separation of fraction B-2 by silica gel column chromatography using cyclohexane-acetone (6:1 \rightarrow 3:1) as eluent provided majusine B (2, 35.8 mg), 14-dehydrobrowniine (18.2 mg), deltaline (6.6 mg), delcosine (28.6 mg), blacknine (18.7 mg), and majusimine A (4, 18.7 mg). Fraction B-4 was separated over a silica gel H column, eluting with cyclohexane-acetone (4:1 \rightarrow 1:1), to yield majusimine B (5, 2.8 mg), delsemine A (130.4 mg), delsemine B (41.6 mg), lycoctonine (58.3 mg), delgrandine (36.2 mg), and acetydelgrandine (35.4 mg). Fraction D was subjected to column chromatography over silica gel employing cyclohexane-acetone (6:1 1:1) as eluent to afford fractions D-1 (150 mg), D-2 (397 mg), D-3 (455 mg), D-4 (432 mg), and D-5 (1.3 g). Fraction D-3 was separated on a silica gel H column, eluting with cyclohexane-acetone (6:1 \rightarrow 3:1), to yield majusine A (1, 55 mg). Separation of fraction E on a silica gel H column, employing cyclohexane-acetone (5:1 \rightarrow 1:2) for elution, afforded fractions E-1 (464 mg), E-2 (150 mg), E-3 (307 mg), E-4 (938 mg), E-5 (596 mg), and E-6 (1.5 g). Further purification of fraction E-3 by silica gel column chromatography, with CHCl₃-CH₃OH (40:1 \rightarrow 10:1) as eluent, yielded majusidine B (9, 19.6 mg), brownine (17.6 mg), tatsiensine (31.6 mg), and 14-dehydrodelcosine (23.6 mg). Fraction E-6 was separated by silica gel column chromatography, eluting with CHCl₃-CH₃OH (30:1 \rightarrow 10:1), to yield majusimine D (7, 5.2 mg), majusimine C (6, 6.6 mg), and majusidine A (8, 7.3 mg).

Majusine A (1): white, amorphous powder; $[\alpha]_{D}^{20}$ +41.3 (*c* 1.0, CHCl₃); IR (KBr) ν_{max} 3748, 3447, 2937, 1685, 1589, 1525, 1260 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃), see Table 1; ESIMS *m*/*z* 601 [M + H]⁺; HRESIMS *m*/*z* 601.3120 [M + H]⁺ (calcd for C₃₂H₄₅N₂O₉, 601.3120).

Majusine B (2): white, amorphous powder; $[\alpha]_{2}^{20}$ +2.1 (*c* 1.0, CHCl₃); IR (KBr) ν_{max} 3735, 2931, 1092 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃), see Table 1; ESIMS *m/z* 458 [M + Na]⁺; HRESIMS *m/z* 436.2682 [M + H]⁺ (calcd for C₂₄H₃₈NO₆, 436.2694).

Majusine C (3): white, amorphous powder; $[\alpha]_{D}^{20}$ +27.9 (*c* 1.0, CHCl₃); IR (KBr) ν_{max} 3510, 2924, 1737, 1250 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃), see Table 1; ESIMS *m*/*z* 514 [M + Na]⁺; HRESIMS *m*/*z* 492.2596 [M + H]⁺(calcd for C₂₆H₃₈NO₈, 492.2592).

Majusimine A (4): white, amorphous powder; $[α]_D^{20}$ –67.2 (*c* 1.0, CHCl₃); IR(KBr) $ν_{max}$ 3735, 2936, 1745, 1540, 1230 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), see Table 2; ¹³C NMR (100 MHz, CDCl₃), see Table 3; ESIMS *m*/*z* 842 [M + H]⁺; HRESIMS *m*/*z* 842.3003 [M + H]⁺ (calcd for C₄₅H₄₈NO₁₅, 842.3018).

Majusimine B (5): white, amorphous powder; $[α]_{10}^{20}$ -54.0 (*c* 1.0, CHCl₃); IR (KBr) ν_{max} 3734, 2935, 1748, 1540, 1236 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.02 (1H, d, *J* = 4 Hz, H-1), 5.24 (1H, dt, *J* = 9.6, 2.4 Hz, H-14), 6.08 (1H, t, *J* = 4 Hz, H-2), 5.17 (1H, t, *J* = 4 Hz, H-3), 3.67 (1H, s, H-7), 5.60 (1H, br d, *J* = 9.6 Hz, H-11), 5.78 (1H, br s, H-15), 5.32, 5.38 (each 1H, s, H₂-17), 1.14 (3H, s, H-18), 3.91 (1H, s, H-20); ¹³C NMR (100 MHz, CDCl₃), see Table 3; ESIMS *m/z* 800 [M + H]⁺; HRESIMS *m/z* 800.2875 [M + H]⁺ (calcd for C₄₃H₄₆NO₁₄, 800.2913).

Majusimine C (6): white, amorphous powder; $[α]_{D}^{20}$ –44.4 (*c* 1.0, CHCl₃); IR (KBr) ν_{max} 3728, 3359, 2927, 1745, 1541, 1232 cm⁻¹; ¹H NMR (400 MHz, C₅D₅N), see Table 2; ¹³C NMR (100 MHz, C₅D₅N), see Table 3; ESIMS *m*/*z* 758 [M + H]⁺; HRESIMS *m*/*z* 758.2836 [M + H]⁺ (calcd for C₄₁H₄₄NO₁₃, 758.2832).

Majusimine D (7): white, amorphous powder; $[α]_{D}^{20}$ -24.7 (*c* 1.0, CHCl₃); IR (KBr) $ν_{max}$ 3736, 3360, 2928, 1745, 1541, 1232 cm⁻¹; ¹H NMR (400 MHz, C₅D₅N), see Table 2; ¹³C NMR (100 MHz, C₅D₅N), see Table 3; ESIMS *m*/*z* 684 [M + Na]⁺; HRESIMS *m*/*z* 652.2376 [M + H]⁺ (calcd for C₃₄H₃₈NO₁₂, 652.2389).

Majusidine A (8): white, amorphous powder; $[\alpha]_{2}^{20} - 38.0$ (*c* 1.0, CHCl₃); IR (KBr) ν_{max} 3736, 3360, 2934, 1729, 1239 cm⁻¹; ¹H NMR (400 MHz, C₅D₅N), see Table 2; ¹³C NMR (100 MHz, C₅D₅N), see Table 3; ESIMS *m*/*z* 388 [M + H]⁺; HRESIMS *m*/*z* 388.2120 [M + H]⁺ (calcd for C₂₂H₃₀NO₅, 388.2118).

Majusidine B (9): white, amorphous powder; $[α]_{2}^{b0}$ +27.9 (*c* 1.0, CHCl₃); IR (KBr) $ν_{max}$ 3748, 3556, 2936, 1701, 1152 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), see Table 2; ¹³C NMR (100 MHz, CDCl₃), see Table 3; ESIMS *m/z* 412 [M + H]⁺; HRESIMS *m/z* 412.2470 [M + H]⁺ (calcd for C₂₅H₃₄NO₄, 412.2482).

Acknowledgment. This research work was supported financially by the National Science Foundation of China (No. 30472075) and the Excellent Ph.D. Dissertation Foundation of China (No. 200367).

Supporting Information Available: Figures S1, S2, S3, S4, and S7 showing ${}^{1}\text{H}{-}^{1}\text{H}$ COSY and HMBC correlations of **2**, **3**, **6**, **7**, and **9**. Figures S5 and S6 showing key NOEDS correlations of **8** and **9**. These materials are available free of charge via the Internet at http:// pubs.acs.org.

References and Notes

 Wang, W. C.; Wamock, M. In *Flora of China*; Wu, Z. Y., Raven, P., Hong, D. Y., Eds.; Science: Beijing, 2004; *Vol. 6*, pp 223–248.

- (2) Wang, F. P.; Liang, X. T. In *The Alkaloids: Chemistry and Biology*; Cordell, G. A., Ed.; Elsevier Science: New York, 2002; Vol. 59, Chapter 1, pp 1–280.
- (3) Dzhakhangirov, F. N.; Sultankhodzhaev, M. N.; Tashkhodzhaev, B.; Salimov, B. T. Chem. Nat. Compd. 1997, 33, 190–202.
- (4) Dzhakhangirov, F. N.; Salimov, B. T.; Bessonova, I. A.; Sultankhodzhaev, M. N. Chem. Nat. Compd. 1995, 31, 708–713.
- (5) Benn, M. N.; Jacyno, J. M. In *The Alkaloids: Chemical and Biological Perspectives*; Pelletier, S. W., Ed.; John Wiley: New York, 1984; Vol. 1, pp 153–376.
- (6) Zhu, D. Y.; Bai, D. L.; Tang, X. C. Drug Dev. Res. 1996, 39, 147-157.
- (7) Heubach, J. F.; Schule, A. Planta Med. 1998, 64, 22-26.
- (8) Wang, X. W.; Xie, H. Drugs Fut. 1999, 24, 877-882.
- (9) Anger, T.; Madge, D. J.; Mulla, M.; Riddal, D. J. Med. Chem. 2001, 44, 115–137.
- (10) Chodoeva, A.; Bosc, J. J.; Guillon, J.; Decendit, A.; Petraud, M. *Bioorg. Med. Chem.* 2005, *13*, 6493–6501.
- (11) Wada, K.; Hazawa, M.; Takahashi, K.; Mori, T.; Kawahara, N.; Kashiwakura, I. J. Nat. Prod. 2007, 70, 1854–1858.
- (12) Deng, Y. P.; Chen, D. H.; Sung, W. L. Acta Chim. Sin. 1992, 50, 822–826.

- (13) Pelletier, S. W.; Desai, H. K.; Sawhney, R. S.; Mody, N. V. J. Nat. *Prod.* **1980**, *43*, 395–406.
- (14) Sung, F.; Benn, M.; Majak, W. Hetercocycles 1991, 32, 1983–1988.
- (15) Pelletier, S. W.; Mody, N. V.; Sawhney, R. S. Can. J. Chem. 1979, 57, 1652–1655.
- (16) Pelletier, S. W.; Mody, N. V.; Varughese, K. I.; Maddry, J. A.; Desai, H. K. J. Am. Chem. Soc. 1981, 103, 6536–6542.
- (17) Pelletier, S. W.; Glinski, J. A.; Joshi, B. S.; Chen, S. Y. *Heterocycles* 1983, 20, 1347–1354.
- (18) Pelletier, S. W.; Mody, N. V.; Joshi, B. S.; Schramm L. C. In *The Alkaloids: Chemical and Perspectives*; Pelletier S. W., Ed.; Wiley: New York, 1983; *Vol. 1*, pp 153–210.
- (19) Pelletier, S. W.; Joshi, B. S. In *The Alkaloids: Chemical and Perspectives*; Pelletier, S. W., Ed.; Wiley: New York, 1991; *Vol. 7*, pp 297-564.
- (20) Zhou, X. L.; Chen, D. L.; Chen, Q. H.; Wang, F. P. J. Nat. Prod. 2005, 68, 1076–1079.

NP800439A